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Motivation and problem description

* Why visual odometry?
— Micro Aerial Vehicles (MAVs) need localization systems
* Why semi-direct method?
— Feature-based method suffers in textureless scenes
— Efficient: no feature extraction and matching on pixels
— Robust: in repetitive, or high-frequency textures
— Use features (120 per image) and small patches
* Problem description:
— Input: Image frames
— Output: Camera pose, and semi-dense depth




Prior work

» Visual Motion Estimation
Methods
— Feature-based method
— Direct method

« Parallel Tracking and
Mapping for Small AR
Workspaces (PTAM)
— 2007

* Monocular Vision for Long-
term Micro Aerial Vehicle
State Estimation: A
Compendium

— 2013
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Method overview

* Semi-direct
— Motion Estimation Thread
— Mapping Thread
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Fig. 1: Tracking and mapping pipeline



Method details and analysis

« motion-estimation (optimization, cost)

Image alignment
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Fig. 2: Changing the relative pose Tyj | between the current and the
previous frame implicitly moves the position of the reprojected points in the
new image uj. Sparse image alignment seeks to find Ty ;| that minimizes
the photometric difference between image patches corresponding to the same
3D point (blue squares). Note, in all figures, the parameters to optimize are
drawn in red and the optimization cost is highlighted in blue.

* mapping
— Depth-filter
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Fig. 3: Due to inaccuracies in the 3D point and camera pose estimation,

the photometric error between corresponding patches (blue squares) in  Fig. 4: In the last motion estimation step, the camera pose and the structure

the current frame and previous keyframes r; can further be minimised by (3D points) are optimized to minimize the reprojection error that has been

optimising the 2D position of each patch individually. established during the previous feature-alignment step.
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Fig. 5: Probabilistic depth estimate d; for feature i in the reference frame r.
The point at the true depth projects to similar image regions in both images
(blue squares). Thus, the depth estimate is updated with the triangulated
depth df computed from the point u] of highest correlation with the reference
patch. The point of highest correlation lies always on the epipolar line in Theert
the new image.
Fig. I: Tracking and mapping pipeline
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Experiments

 Baseline

— 2013: Modified PTAM

+ Settings

— Fast or accurate method

Fast  Accurate

Max number of features per image

Max number of keyframes
Local Bundle Adjustment

120 200
10 50
no yes

TABLE I: Two different parameter settings of SVO.

— Dataset: outdoor

* Speed

Laptop (fps)

Embedded (fps)

Fast

>300

55

PTAM

91

27
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Fig. 7: Comparison against the ground-truth of SVO with the fast parameter
setting (see Table @ and of PTAM. Zooming-in reveals that the proposed
algorithm generates a smoother trajectory than PTAM.

Pos-RMSE ~ Pos-Median ~ Rot-RMSE  Rot-Median

[m/s] [m/s] [deg/s] [deg/s]
fast 0.0059 0.0047 0.4295 0.3686
accurate 0.0051 0.0038 0.4519 0.3858
PTAM 0.0164 0.0142 0.4585 0.3808

TABLE II: Relative pose and rotation error of the trajectory in Figure 7
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Future work and discussion

« Discussion
— Can we only use step(1): image alignment? — more drift

— Can we skip step(1), and work directly on feature alignment and
pose alignment? — outliers

 Future work iton Estimation Thrend

Sparse Model-based
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Questions?

* Failure cases?
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Prior work

* Visual Motion Estimation Methods

— Feature-based method

» feature detectors and descriptors that allow matching between
images even at large inter-frame movement

« the neccessity for robust estimation techniques to deal with wrong
correspondences
— Direct method
« estimate struc- ture and motion directly from intensity values in the
image
« outperform feature-based methods in terms of robustness in

scenes with little texture [14] or in the case of camera- defocus and
motion blur

» he computation of the photometric error is more intensive than the
reprojection error



Prior work

* Monocular VO algorithm
- PTAM

- DTAM
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Method details and analysis

* motion-estimation

— pose initialisation through sparse model-based image alignment
* minimizing the photometric error

* mapping

* Features - bundle adjustment



