SVO: Fast Semi-Direct Monocular Visual Odometry

Christian Forster, Matia Pizzoli, Davide Scaramuzza Robotics and Perception Group, University of Zurich, Switzerland ICRA 2014

Presenter: You-Yi Jau, M.S. in UCSD

Motivation and problem description

- Why visual odometry?
 - Micro Aerial Vehicles (MAVs) need localization systems
- Why semi-direct method?
 - Feature-based method suffers in textureless scenes
 - Efficient: no feature extraction and matching on pixels
 - Robust: in repetitive, or high-frequency textures
 - Use features (120 per image) and small patches
- Problem description:
 - Input: Image frames
 - Output: Camera pose, and semi-dense depth

Fig. 17: "Nano+" by KMel Robotics, customized with embedded processor and downward-looking camera. SVO runs at 55 frames per second on the platform and is used for stabilization and control.

Prior work

- Visual Motion Estimation Methods
 - Feature-based method
 - Direct method
- Parallel Tracking and Mapping for Small AR Workspaces (PTAM) – 2007
- Monocular Vision for Longterm Micro Aerial Vehicle State Estimation: A Compendium
 - 2013

Method overview

- Semi-direct
 - Motion Estimation Thread
 - Mapping Thread

Fig. 1: Tracking and mapping pipeline

Method details and analysis

motion-estimation (optimization, cost)

Image alignment

- mapping
 - Depth-filter
 - Update with correlation

Fig. 3: Due to inaccuracies in the 3D point and camera pose estimation, the photometric error between corresponding patches (blue squares) in the current frame and previous keyframes r_i can further be minimised by optimising the 2D position of each patch individually.

Fig. 4: In the last motion estimation step, the camera pose and the structure (3D points) are optimized to minimize the reprojection error that has been established during the previous feature-alignment step.

 $\mathbf{T}_{r,k}$

11.

⁵

Experiments

- Baseline
 - 2013: Modified PTAM
- Settings
 - Fast or accurate method

	Fast	Accurate
Max number of features per image	120	200
Max number of keyframes	10	50
Local Bundle Adjustment	no	yes

TABLE I: Two different parameter settings of SVO.

- Dataset: outdoor
- Speed

	Laptop (fps)	Embedded (fps)
Fast	>300	55
PTAM	91	27

Fig. 7: Comparison against the ground-truth of SVO with the *fast* parameter setting (see Table [I) and of PTAM. Zooming-in reveals that the proposed algorithm generates a smoother trajectory than PTAM.

	Pos-RMSE	Pos-Median	Rot-RMSE	Rot-Median		
	[m/s]	[m/s]	[deg/s]	[deg/s]		
fast	0.0059	0.0047	0.4295	0.3686		
accurate	0.0051	0.0038	0.4519	0.3858		
PTAM	0.0164	0.0142	0.4585	0.3808		

TABLE II: Relative pose and rotation error of the trajectory in Figure 7

Future work and discussion

- Discussion
 - Can we only use step(1): image alignment? more drift
 - Can we skip step(1), and work directly on feature alignment and pose alignment? – outliers
- Future work

- Unknown scale: visual-inertial

Questions?

• Failure cases?

Prior work

- Visual Motion Estimation Methods
 - Feature-based method
 - feature detectors and descriptors that allow matching between images even at large inter-frame movement
 - the neccessity for robust estimation techniques to deal with wrong correspondences
 - Direct method
 - estimate struc- ture and motion directly from intensity values in the image
 - outperform feature-based methods in terms of robustness in scenes with little texture [14] or in the case of camera- defocus and motion blur
 - he computation of the photometric error is more intensive than the reprojection error

Prior work

- Monocular VO algorithm
- PTAM
- DTAM

Method details and analysis

- motion-estimation
 - pose initialisation through sparse model-based image alignment
 - minimizing the photometric error
- mapping
- Features → bundle adjustment