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Motivation and problem description

 Why 2D features?
— Establishing pixel-level correspondences is important

— Applications in 3D computer vision, video compression, tracking,
image retrieval, and visual localization

« Why sparse feature?

— Correspondences can be matched efficiently via nearest neighbor
search



Motivation and problem description

Why 2D features?
— Establishing pixel-level correspondences is important
— Applications in 3D computer vision, video compression, tracking, image retrieval, and visual
localization
*  Why sparse feature?
— Correspondences can be matched efficiently via nearest neighbor search

— Sparse local features have been applied successfully under a wide range of imaging
conditions. However, they typically perform poorly under extreme appearance changes.

— local descriptors can still be matched successfully even if keypoints cannot be detected
reliably

— we propose a describe-and-detect approach to sparse local feature detection and
description: Rather than performing feature detection early on based on low-level
information, we propose to postpone the detection stage.



SIFT: strong baseline
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Distinctive image features from scale-invariant keypoints
DG Lowe - International journal of computer vision, 2004
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Figure 2. Self-Supervised Training Overview. In our self-supervised approach, we (a) pre-train an initial interest point detector on
synthetic data and (b) apply a novel Homographic Adaptation procedure to automatically label images from a target, unlabeled domain.
The generated labels are used to (c) train a fully-convolutional network that jointly extracts interest points and descriptors from an image.
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Highlights

 LF-Net: Local Feature Network
» Contribution
— Trainable end-to-end
— use image pairs: relative pose and corresponding depth maps



Motivation and problem description

 Contribution

we propose a sparse-matching method with a novel deep architecture,
which we name LF-Net, for Local Feature Network

we use image pairs for which we know the relative pose and
corresponding depth maps



Method overview

» learn a local feature pipeline from scratch, using collections of
images without the need for human supervision.

« we exploit depth and relative camera pose cues to create a virtual
target that the network should achieve on one image
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(a) The LF-Net architecture. The detector network generates a scale-space score map along with dense orientation
estimates, which are used to select the keypoints. Image patches around the chosen keypoints are cropped with a
differentiable sampler (STN) and fed to the descriptor network, which generates a descriptor for each patch.
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(b) For training we use a two-branch LF-Net, containing two identical copies of the network, processing two
corresponding images /; and /;. Branch j (right) is used to generate a supervision signal for branch ¢ (left),
created by warping the results from ¢ to j. As this is not differentiable, we optimize only over branch 7, and
update the network copy for branch j in the next iteration. We omit the samplers in this figure, for simplicity.

Figure 1: (a) The Local Feature Network (LF-Net). (b) Training with two LF-Nets.
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(a) The LF-Net architecture. The detector network generates a scale-space score map along with dense orientation
estimates, which are used to select the keypoints. Image patches around the chosen keypoints are cropped with a
differentiable sampler (STN) and fed to the descriptor network, which generates a descriptor for each patch.
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(b) For training we use a two-branch LF-Net, containing two identical copies of the network, processing two
corresponding images /; and /;. Branch j (right) is used to generate a supervision signal for branch ¢ (left),
created by warping the results from ¢ to j. As this is not differentiable, we optimize only over branch 7, and
update the network copy for branch j in the next iteration. We omit the samplers in this figure, for simplicity.

Figure 1: (a) The Local Feature Network (LF-Net). (b) Training with two LF-Nets.

o Detector loss: Ljer = Lim + ApairLpair + Lgeom
e Descriptor loss: Liese = Liri

Lim(S:,8;) = [Si — g(w(S;))|* . (©)
Lpair(DF, DY) =" |DF - DS
k
Logeom (s, 05, 85,0%) = Nors 3105 — 0517 + Agcare Y |5 — 352
k k

With the matching and non-matching pairs, we form the triplet loss as:
£44(DE,DE DY) = 3 max (0,|DF - DEE —[DE - DY+ C)
k

where k' # k, i.e., it can be any non-corresponding sample, and C=1 is the margin.
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Loss

 Final Loss

Loss function for each sub-network. In summary, the loss function that is used to learn each
sub-network is the following:

e Detector loss: Lier = Liy + ApairLpair + Lgeom
e Descriptor loss: Lgese = Liri

« Detector consistency loss: known correspondences

‘Cpazr Dk Dk Z |Dk Dk|2

Egeom(s ezka Afa 95) — /\ori |9f - 0;€|2 + Ascale Z |3f - '§§ 2 ’ (4)
k k
Lim(Si,8;) = [S; — g(w(S;)* . 2)

Here, as mentioned before, occluded image regions are not used for optimization.
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Loss

* Descriptor loss
— triplet loss

With the matching and non-matching pairs, we form the triplet loss as:

Lii(DE, D5, DY) =3 max (o, IDF — DF2 — |DF - D2 4 C) . )
k

where k' # k, i.e., it can be any non-corresponding sample, and C'=1 is the margin.
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Method details and analysis

* Detector

— dense, multi-scale, fully convolutional network

— predict keypoint locations, scales, and orientations
« Descriptor

— given patches cropped around the keypoints

— outputs local descriptors

15



Method details and analysis

 Detector

— The first network is a dense, multi-scale, fully convolutional network that
returns keypoint locations, scales, and orientations.

» Descriptor

— The second is a network that outputs local descriptors given patches
cropped around the keypoints produced by the first network.
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Detector details

* Feature map: model
— ResNet blocks
— same output size as the input

« Scale

— 5Slayers

— heatmap - softmax over patches = softmax over different scales - top K pixels
as keypoints - softargmax (sub-pixel)

* Orientation estimation
— 5 x 5 convolution on heatmap - predict cosé, sind

17



Detector details

* Feature map: model
— ResNet layout with three blocks

— Each block contains 5 x 5 convolutional filters followed by batch normalization,
leaky-ReLU activations, and another set of 5 x 5 convolutions.

— same output size as the input, and have 16 output channels
« Scale

— uniform intervals between 1/R and R, where N = 5 and R = 2%(0.5)

— heatmap - softmax over patches - softmax over different scales - top K pixels
as keypoints = softargmax (sub-pixel)

» Orientation estimation
— 5 x 5 convolution on heatmap - predict cosé, siné
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Descriptor details

« patch size: 32 x 32

 Model:

— three 3 X 3 convolutional filters with a stride of 2 and 64, 128, and 256
channels respectively.

— And fully-connected 512-channel layer

19



Descriptor details

« crop them from the normalized images and resize them to 32 x 32

 Model:

— Our descriptor network comprises three 3 X 3 convolutional filters with a
stride of 2 and 64, 128, and 256 channels respectively. And fully-
connected 512-channel layer

20



Training data

Figure 2: Samples from our indoors and outdoors datasets. Image regions without depth measure-
ments, due to occlusions or sensor shortcomings, are drawn in red, and are simply excluded from the
optimization. Note the remaining artefacts in the depth maps for outdoors images.
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Qualitative results

(a) SIFT (b) SURF (c) A-KAZE (d) LF-Net (ours)

Figure 3: Qualitative matching results, with correct matches drawn in green.
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Matching score on indoor and outdoor

Table 1: Matching score for the outdoors dataset. Best results are marked in bold.

 w/ rot-scl:

LF-Net

Sequence SIFT SURF A-KAZE ORB LIFT SuperPoint i }
q w/rot-scl  w/o rot-scl
- data augmentatlon ‘british_museum’ 265 288 .287 .055 318 468 456 .560
‘florence_cathedral_side’ 181 158 .116 027 204 .359 285 .362
‘lincoln_memorial_statue’ .193  .204 167 037 220 .384 288 357
‘london_bridge’ 177 170 .168 057 250 468 342 452
‘milan_cathedral’ 188 221 .194 021 237 401 423 520
‘mount_rushmore’ 225 241 .210 .041 300 512 .379 543
‘piazza_san_marco’ A15 115 .106 026  .145 253 233 287
‘reichstag’ 212 .209 175 097 246 414 379 .466
‘sagrada_familia’ 199 175 .140 031 205 295 311 341
‘st_pauls_cathedral’ 149 1160 150 026 177 319 .266 347
‘united_states_capitol’ 118 .103 .086 028 134 220 173 232
Average 184 186 164 041 221 372 321 .406

Table 2: Matching score for the indoors dataset. Best results are marked in bold.

LF-Net

Frame difference SIFT SURF A-KAZE ORB LIFT SuperPoint
(w/rot-scl) (w/o rot-scl)

10 320 464 465 223 389 .688 .607 .688
20 264 357 337 72283 599 497 574
30 226 .290 .260 141 247 525 419 483
60 52179 .145 089 147 358 276 .300
Average 241 323 302 A56 267 542 450 511
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In short

 LF-Netis deep learning approach for detector and descriptor
» Detector and descriptor do not share parameters
» Use output from off-the-shelf SFM method as supervision

Detector STN —»@—» Descriptor —» D’i‘

i yisi 0} patches

(a) The LF-Net architecture. The detector network generates a scale-space score map along with dense orientation
estimates, which are used to select the keypoints. Image patches around the chosen keypoints are cropped with a
differentiable sampler (STN) and fed to the descriptor network, which generates a descriptor for each patch.
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(b) For training we use a two-branch LF-Net, containing two identical copies of the network, processing two
corresponding images I; and I;. Branch j (right) is used to generate a supervision signal for branch i (left),
created by warping the results from 7 to j. As this is not differentiable, we optimize only over branch i, and
update the network copy for branch j in the next iteration. We omit the samplers in this figure, for simplicity.

Figure 1: (a) The Local Feature Network (LF-Net). (b) Training with two LF-Nets.
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Future work and discussion

 How good can LF-Net work on structure from motion task, compared
to SIFT?

25



Questions?
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Motivation and problem description

Why feature?
— Establishing pixel-level correspondences is important
— Applications in 3D computer vision, video compression, tracking, image retrieval, and visual
localization
*  Why sparse feature?
— Correspondences can be matched efficiently via nearest neighbor search

— Sparse local features have been applied successfully under a wide range of imaging
conditions. However, they typically perform poorly under extreme appearance changes.

— local descriptors can still be matched successfully even if keypoints cannot be detected
reliably

— we propose a describe-and-detect approach to sparse local feature detection and
description: Rather than performing feature detection early on based on low-level
information, we propose to postpone the detection stage.

28



Qualitative results

Figure 1: Examples of matches obtained by the D2-Net
method. The proposed method can find image correspondences
even under significant appearance differences caused by strong
changes in illumination such as day-to-night, changes in depiction
style or under image degradation caused by motion blur.
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Main idea

describe

« shares all parameters //'5,/

between detection and % Ias T

description y

* pe rform dense feature (a) detect-then-describe (b) detect-and-describe

extraction for both ,
: Figure 2: Comparison between different approaches for fea-
detector and deSC”ptor ture detection and description. Pipeline (a) corresponds to dif-
ferent variants of the two-stage detect-then-describe approach. In
contrast, our proposed pipeline (b) uses a single CNN which ex-
tracts dense features that serve as both descriptors and detectors.

« Change from detect-then- descriptors
describe to detect-and- %/ gﬂ/ detections
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Prior work

Local features
— SIFT

— SuperPoint: shares a deep representation between detection and
description

Dense descriptor extraction and matching.

— Christopher B. Choy, JunYoung Gwak, Silvio Savarese, andManmohan
Chandraker. Universal Correspondence Net-work. In NIPS, 2016.

Image retrieval.
Object detection.

31



Method overview

« shares all parameters between detection and description
» perform dense feature extraction for both detector and descriptor

32



Method overview

On the contrary, our method shares all parameters between
detection and description and uses a joint formulation that
simultaneously optimizes for both tasks.

Contrary to the classical detect-then-describe ap- proaches, which
use a two-stage pipeline, we propose to perform dense feature
extraction to obtain a representation that is simultaneously a
detector and a descriptor. Because both detector and descriptor
share the underlying represen- tation, we refer to our approach as
D2.

33
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Pipeline

* Pretrained VGG16 feature extractor as initialization

joint detection and description
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Figure 3: Proposed detect-and-describe (D2) network. A feature extraction CNN F is used to extract feature maps that play a dual role:
(1) local descriptors d;; are simply obtained by traversing all the n feature maps DF at a spatial position (i, 7); (ii) detections are obtained
by performing a non-local-maximum suppression on a feature map followed by a non-maximum suppression across each descriptor - during
training, keypoint detection scores s;; are computed from a soft local-maximum score « and a ratio-to-maximum score per descriptor /3.
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Pipeline

Figure 3: Proposed detect-and-describe (D2) network. A feature extraction CNN F is used to extract feature maps that play a dual role:
(1) local descriptors d;; are simply obtained by traversing all the n feature maps DF at a spatial position (i, 7); (ii) detections are obtained
by performing a non-local-maximum suppression on a feature map followed by a non-maximum suppression across each descriptor - during
training, keypoint detection scores s;; are computed from a soft local-maximum score « and a ratio-to-maximum score per descriptor /3.
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Pipeline

 Detector

— Soft local-max with neighbors - channel-wise NMS - max across

feature maps

joint detection and description

i descriptor
]

s

F

W—
n Xh
F o S
feature l :
extraction W.
Ioc7al\ \

Dk

k

soft detection module

Q
S >

- >
atio-to-max

soft-NMS

soft detection score
sij

Figure 3: Proposed detect-and-describe (D2) network. A feature extraction CNN F is used to extract feature maps that play a dual role:
(1) local descriptors d;; are simply obtained by traversing all the n feature maps D¥ at a spatial position (i, 7); (ii) detections are obtained
by performing a non-local-maximum suppression on a feature map followed by a non-maximum suppression across each descriptor - during
training, keypoint detection scores s;; are computed from a soft local-maximum score «v and a ratio-to-maximum score per descriptor /3.
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Loss

m(c) = max (0, M + p(c)* — n(c)?) . (12)
- Descriptor + Detector s s
LI, L) =Y m(p(c),n(c)),  (13)
. . (1) (2)
— Weighted triplet loss ceC DoqecSq Sq
joint detection and description o kﬁj ij soft dfetection module
s ] h soft-NMS
- ™ Q
" | i
l S o< atio-to-max
J Ioc?al\ \
I desc(rllptor F DF soft detesgtion score
ij ]

Figure 3: Proposed detect-and-describe (D2) network. A feature extraction CNN F is used to extract feature maps that play a dual role:
(1) local descriptors d;; are simply obtained by traversing all the n feature maps D¥ at a spatial position (i, 7); (ii) detections are obtained
by performing a non-local-maximum suppression on a feature map followed by a non-maximum suppression across each descriptor - during
training, keypoint detection scores s;; are computed from a soft local-maximum score «v and a ratio-to-maximum score per descriptor /3.
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In traditional feature detectors such as DoG, the detection map
would be sparsified by performing a spatial non-local-maximum
suppression.

However, in our approach, contrary to traditional feature detectors,
there exist multiple detection maps

38
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Get feature points

 Hard feature detection

(i,7) is a detection <= ij is a local max. in D* |
with £ = arg 1fnax Df-j .
(3)
« Soft feature detection.

ok — exp (Df]) ’ @

1y L
2 (,3)EN (i.j) ©XP (Di'j')

Bl = Djj/max Djj . (5)

7ij = max (ak 8) Sij = ij / > Vs

(@/,3")

39
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Soft feature detection. During training, the hard detection
procedure described above is softened to be amenable for
back-propagation. First, we define a soft local-max. score

k
ko exp (D)
ij & ’
2,5 eN () OXP (Di'j')

where N (i, j) is the set of 9 neighbours of the pixel (i, j)
(including itself). Then, we define the soft channel selec-
tion, which computes a ratio-to-max. per descriptor that
emulates channel-wise non-maximum suppression:

“

«

kE _ pk
i = Dij/mta;x ij . (5

Next, in order to take both criteria into account, we maxi-
mize the product of both scores across all feature maps k to
obtain a single score map:

v = s (o 85) ®

Finally, the soft detection score s;; at a pixel (i, j) is ob-
tained by performing an image-level normalization:

Sij = 'Yij/ > g (7N
(@".3")

40
| | | | | |



Multiscale detection at test time

« Multiscale Detection
— we propose to use an image pyramid

— This is only performed during test time.
— r0=0.5,1,2

Fr=Fr4+) F7. (8)

y<p

— Note that the feature maps F_ro have different resolutions.
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Method details and analysis

 Loss
— Descriptor: triplet margin ranking loss

m(c) = max (0, M + p(c)* — n(c)?) . (12)

— Descriptor + Detector:
* weighted descriptor loss

seVsl?)

LI, I) =) (o), n(e),  (13)

ceC ZqEC Sq  Sq




Method details and analysis

 Loss
— Descriptor: triplet margin ranking loss

m(c) = max (0, M + p(c)* — n(c)?) . (12)

— Descriptor + Detector:

» The proposed loss produces a weighted average of the margin terms m over
all matches based on their detection scores.

» Thus, in order for the loss to be minimized, the most distinctive
correspondences (with a lower margin term) will get higher relative scores
and vice-versa

(1) (2)

LI D) =Y G gme),n(e),  (13)

ceC ZqEC Sq " Sq
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Training Data

* Training Data

— MegaDepth dataset consisting of 196 different scenes reconstructed
from 1,070,468 internet photos using COLMAP
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Experiments

* Image Matching

10 Overall Illumination Viewpoint Method # Features # Matches
0.8 = Hes. det. + RootSIFT 6.7K 2.8K
' HAN + HN++ [35,306]  3.9K 2.0K
<06 m— [_F-Net [39] 0.5K 0.2K
= === SuperPoint [ | 3] 1.7K 0.9K
204 = DELF [3%] 4.6K 1.9K
0.2 = D2 SS (ours) 3.0K 1.2K
e D2 MS (0urs) 4.9K 1.7K
00 5 345678010 12345678910 12345678910 === D2 §S Trained (ours) 6.0K 2.5K
threshold [px] === D2 MS Trained (ours) 8.3K 2.8K

Figure 4: Evaluation on HPatches [5] image pairs. For each method, the mean matching accuracy (MMA) as a function of the matching
threshold (in pixels) is shown. We also report the mean number of detected features and the mean number of mutual nearest neighbor
matches. Our approach achieves the best overall performance after a threshold of 6.5px, both using a single (SS) and multiple (MS) scales.

— Worse for stricter matching threshold

45



3D Reconstruction
— MVS
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Experiments

* Localization under challenging Conditions
— Day-Night Visual Localization

s U pright ROOtSIFT s Dense StM HesAffNet + HardNet++ Correctly localized queries (%)
m==SuperPoint  ===DELF m——=D2SS  ==D2SS Trained Method # Features 0.5m, 2° 1.0m, 5° 5.0m, 10° 10m, 25°
% 100% = — a1 Upright RootSIFT [30]  11.3K 36.7 54.1 72.5 81.6
2 909 - i DenseSfM [46] 7.5K/30K  39.8 60.2 84.7 99.0
b HAN + HN++ [ 35, 30] 11.5K 39.8 61.2 77.6 88.8
S 80% 1 T SuperPoint [13] 6.6K 42.8  57.1 75.5 86.7
S 70% . DELF [38] 11K 388 622  85.7 98.0
:: 60% 4 | D2 SS (ours) 7K 41.8 66.3 85.7 98.0
g D2 MS (ours) 11.4K 43.9 67.3 87.8 99.0
o 50% 5 s : s 0 o 10 20 D2 SS Tralped (ours) 14.5K 44.9 66.3 88.8 100
Distance threshold [m] Orientation threshold [deg] D2 MS Trained (ours) 19.3K 44.9 64.3 88.8 100

Figure 5: Evaluation on the Aachen Day-Night dataset [46, 48]. We report the percentage of images registered within given error
thresholds. Our approach improves upon state-of-the art methods by a significant margin under strict pose thresholds.

Benchmarking 6dof outdoor visual localization in changing conditions
T Sattler, W Maddern, C Toft, A Torii, L Hammarstrand... - Proceedings of the IEEE ..., 2018, CVPR(SPOT) 47
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Qualitative results

Figure 1: Examples of matches obtained by the D2-Net
method. The proposed method can find image correspondences
even under significant appearance differences caused by strong
changes in illumination such as day-to-night, changes in depiction
style or under image degradation caused by motion blur.
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Qualitative results

o Soft detection scores for different scenes
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Qualitative results - InLoc

Recye,

Figure 10: Examples of correctly matched image pairs from
the InLoc [59] dataset. Our features are robust to significant
changes in viewpoint as it can be seen in the first example. In
textureless areas, our features act as an object matcher - corre-
spondences are found between the furniture of different scenes.
Sometimes, matches are even found across windows on nearby
buildings.

Figure 11: Failure cases from the InLoc [59] dataset. Even
though they are visually correct, the matches sometimes put in cor-
respondence identical objects from different scenes. Another typ-
ical error case is due to repeated patterns (e.g. on carpets) which
yield a significant number of inliers.
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Qualitative results — Day-Night

Figure 12: Examples of correctly matched image pairs from the Aachen Day-Night [46,48] dataset. Our features consistently provide
a significant number of good matches between images with strong illumination changes. The first two image pairs come from scenes where
no other method was able to register the night-time image. For the last two, DELF [38] was the only other method that succeeded.
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In short

 D2-Net is deep learning approach for detector and descriptor
« One representation for both detector and descriptor

» Use outputs from off-the-shelf SFM method as supervision

* Weighted triplet loss

joint detection and description F’] DF. soft detection module
BN kv 1
g “ I h soft-NMS
4, g f n N QO
N :?1 ‘ —>TL 1 = )/
i feature I atio-to-max
A‘E} extraction
_ 38 sl local l
I descriptor [’ Dk soft detection score
1] v]

Figure 3: Proposed detect-and-describe (D2) network. A feature extraction CNN F is used to extract feature maps that play a dual role:
(i) local descriptors d;; are simply obtained by traversing all the n feature maps D at a spatial position (4, 7); (ii) detections are obtained
by performing a non-local-maximum suppression on a feature map followed by a non-maximum suppression across each descriptor - during
training, keypoint detection scores s;; are computed from a soft local-maximum score « and a ratio-to-maximum score per descriptor /3.



Future work and discussion

» Feature points are not accurate

» Keep the resolution of image features
— low resolution (1/8) when training
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Questions?
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ContextDesc: Local Descriptor Augmentation with Cross-Modality Context

Zixin Luo'  Tianwei Shen'  Lei Zhou'  Jiahui Zhang?
Yao Yao!  ShiweiLi'  Tian Fang®  Long Quan'
'Hong Kong University of Science and Technology
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Motivation and problem description

» Why local feature descriptor?

— panorama stitching, wide-baseline matching,
image retrieval and structure-from-motion (SfM)

« What is the challenge?

— repetitive patterns

— visually indistinguishable from ground truth
 What is the goal?

— feature description with extra prior knowledge

— effectively combine the local feature description " (b)
and off-the-shelf visual understandings Figure 1: (a) Saturated results on standard benchmark [2]

by a recent method [23]. The search of nearest neigh-
bors (NN) returns false matches though visually similar to
groundtruth (GT), indicating the limitation of relying on
only local visual information. (b) 2D keypoints distribute
structurally, on which we human beings are capable of es-
tablishing coarse matches even without color information.
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Motivation and problem description

« Why local feature descriptor?

— panorama stitch- ing [21], wide-baseline matching [24, 54, 55], image re- trieval [27] and
structure-from-motion (SfM)

 What is the challenge?

— due to repetitive patterns, the matching algorithm often finds false matches as nearest
neighbors that are vi- sually indistinguishable from groundtruth

« What is the goal?
— we seek to enhance the local feature description with extra prior knowledge, which we refer
to as introducing context awareness to augment local feature descriptors.
— Previously, a multi-scale-like architecture can help to capture visual context of different levels

— we strive to effectively combine the local feature description and off-the-shelf visual
understandings so as to go beyond the local detail representation.
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Contributions

« Anovel visual context encoder
— high-level visual understandings
* A novel geometric context encoder
— unordered points and exploits geometric cues
* Anovel N-pair loss
— requires no manual hyper-parameter search
— better convergence properties.

58



Contributions

 Contributions

— a novel visual context encoder that integrates high-level visual
understandings from regional image representation, a technique often
used by image retrieval

— A novel geometric context encoder that consumes unordered points and
exploits geometric cues from 2D keypoint distri-bution, while being
robust to complex variations.

— A novel N-pair loss that requires no manual hyper-parameter search
and has better convergence properties.
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Figure 1: (a) Saturated results on standard benchmark [2]
by a recent method [23]. The search of nearest neigh-
bors (NN) returns false matches though visually similar to
groundtruth (GT), indicating the limitation of relying on
only local visual information. (b) 2D keypoints distribute
structurally, on which we human beings are capable of es-

tablishing coarse matches even without color information.
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Prior work

« Learned local descriptors
— take individual image patches as input

Medium: LSD-slam and ORB-slam2, a literature based explanation 61



Method overview
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Figure 2: The proposed augmentation framework consumes a single image as input, from which 2D keypoints, local and
regional features are extracted and encoded as geometric and visual context to improve the raw local feature description.
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Preparation module

« Patch sampler - '
— SIFT feature detector e . The e sgmenatn etk comanes 3 ol e s, o Wi 2 ks o
— 32 x 32 gray-scale patches
— sampled by a spatial transformer from SIFT

» Local feature extractor

— takes image patches as input, producing 128-d feature descriptions as
output

— 7-layer CNN
» Regional feature extractor
— features from an off-the-shelf deep image retrieval model of ResNet-50
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Geometric context encoder

Visual context encoder I —c

Perceptros
Residual Unit 0
wICN

Augmentation

Preparation|

Figure 2: The proposed augmentation framework consumes a single image as input, from which 2D keypoints, local and
regional features are extracted and encoded as geometric and visual context to improve the raw local feature description.

* kNN interpolation
concatenate raw local features and regional features

Pass through MLPs, forming the final 128-d features.
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Geometric context encoder

* This module takes K unordered points as
input, and outputs 128-d corresponding

feature vectors.

— point coordinates

— Matchability predictor
R(fi f{. f3. F3) = o)
(H(f1) = H(F))(H(f3) — H(£3)) > 0,

the final objective can be obtained with a hinge loss:

R(fi. £, 3. 19)).
3)

ﬁquad —

1
KK—1) Z max (0,

1,J,iF]

Figure 2: The proposed augmentation framework cons
regional features are ex

ngle image plfomwh ch 2D keypoints, local and
tracted and encoded as geometric and visual context to improve the raw local feature description.

r,rw\ I

1'“ sfy r/:i

Figure 4: Visualization of matchablhty respondmg to the
entire image (best viewed in color).
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Loss

MLP w/ CN

* N-pair loss

Augmentation

g . Figure 2: The proposed augmentation framework consumes a single image as input, from which 2D keypoints, local and
— pOS Itlve pa I rS CI Ose r regional features are extracted and encoded as geometric and visual context to improve the raw local feature description.
— negative pairs farther Liotat = LN-pair + Mquad, (7)

We use the log-likelihood form of N-pair loss [43] as ~ Where wechoose A = 1 in the experiment.
a base, which originally does not involve any tunable pa-
rameter. Formally, given L2-normalized feature descriptors
Fi o= [fif2. N7, Fs = [fif2. )T € RVXI2,
the distance matrix D = [d;;]nxn can be obtained by
D = /2(1 — F,FY). By applying both row-wise (r) and
column-wise (¢) softmax, we derive the final loss as:

1 I C
LN-pair = —5(; log s;; + EZ: log s5;), )

where [s;;]nxn = softmax(2 — D).
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Geometric context encoder

Feature aggregation

MLP w/ CN

Augmentation

Figure 2: The proposed augmentation framework consumes a single image as input, from which 2D keypoints, local and
regional features are extracted and encoded as geometric and visual context to improve the raw local feature description.

* element-wise summation and L2-normalization
— same feature dimensionality

* Flexible
— still work when only geometric context is available
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Method overview

: )\ 5 B\
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Figure 2: The proposed augmentation framework consumes a single image as input, from which 2D keypoints, local and
regional features are extracted and encoded as geometric and visual context to improve the raw local feature description.
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Visual context encoder

* In our framework, the global feature can be derived by applying
Maximum Activations of Convolutions (MAC) aggregation, which
simply max-pools over all dimensions of regional features.

* kNN interpolation

« Finally, raw local features are concatenated and further mapped by
MLPs, forming the final 128-d features.
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Implementation details

« Training dataset.

— large-scale photo-tourism and aerial datasets (GL3D), and generate
ground truth matches from SfM

« Data augmentation
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Experiments

« Matchings on Hpatches
— Recall = # Correct Matches / # Correspondences

Visual context encoder | Geometric context encoder | Comparison with other methods
Strategy Recall i/v Network architecture Recall ifv Method Recall i/v
baseline (GeoDesc [23]) 59.46 71.24 | baseline (GeoDesc [23]) 59.46 71.24 | SIFT [22 47.36 53.06
CS (256-d) [50, 19, 43] 59.83 71.27 | PointNet [31] 59.61 70.96 | L2-Net [+3] 47.58 53.96
w/ global feature [5] 59.11 71.02 | w/CN (pre.) + xy 61.67 72.63 | HardNet [25] 57.63 63.36
w/ regional feature 63.64 73.37 | w/CN (pre.) + xy + raw local feature | 60.91 7299 | GeoDesc [23] | 5946  71.24
w/ regional feature + CN | 63.98 73.63 | w/ CN (orig.) + xy + matchability 59.94 71.25 | ContextDesc 66.55  75.52
w/ CN (pre.) + xy + matchability 62.82 73.40 | ContextDesc+ | 67.14 76.42

Table 1: Comparisons on HPSequences [ ] of different designs of visual and geometric context encoder, and the performance
of entire augmentation scheme. ‘i/v’ denotes two evaluations on illumination and viewpoint sequences, respectively.

71



SIFT

GeoDesc

Ours

Figure 5: Matching results after RANSAC in different challenging scenarios. From top to bottom: SIFT, GeoDesc and ours.
The augmented feature helps to find more inlier matches, and further allows a more accurate recovery of camera geometry.
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In short

* Only descriptor

» Local patches (VGG-like) + global features (ResNet) + Point
coordinates (PointNet)
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Future work and discussion

« Computational cost

— Slow

* End-to-end training

Preparation

Augmentation

local feat. regional feat. | geo. context vis. context multi-context
Time (ms) 351 49 5 14 18
FLOPs (B) 802.9 123.4 1.7 13.9 15.7
Params (M) 2.4 24.5 <0.1 3.1 32

Table 6: The computational cost of proposed framework,
evaluated on 10k keypoints from an 896 x 896 image. The
inference time is estimated on an NVIDIA GTX 1080 GPU.

— we freeze only the regional model and train from scratch with Eq. 7 on

the augmented feature

— end-to-end train with the regional model. No improvement.
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Questions?
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Takeaways

« SIFT is robust with subpixel accuracy
— LF-Net: softargmax
— Change backbone: receptive field vs. efficiency

« Training dataset is from COLMAP

76



Thank you




Backup




Context normalization

- . - - Formally, let o! € R be the output of layer [ for cor-
Formally, CN_is a non-parametric_operation that sim- respondence i, where C' is the number of neurons in /. We
ply normalizes feature maps according to their distribution, take the normalized version of o! to be
l — [ . . .
written as 6 = (o'a,” ) where 0! is the output of i-th point
in layer [, and p!,o! are mean and standard deviation of
the output in layer [. To equip the operation, we borrow where
the residual architecture in [/V], where each residual unit is N L&
o 1 l l 2
bu1lF W{th perc_eptrons fo}lowpd by context and batch nor- — Zo. o =\|% (ol —p)* . 5
malization, as illustrated in Fig. 3a. i=1 i=1

P,
CN (Oi) — (Oi o-lp’) \ (4)

This operation is mechanically similar to other normal-
ization techniques [ 14, |, 30], but is applied to a different di-
mension and plays a different role. We normalize each per-
ceptron’s output across correspondences, but separately for
each image pair. This allows the distribution of the feature
maps to encode scene geometry and camera motion, embed-
ding contextual information into context-agnostic MLPs.

Learning to find good correspondences

KM Yi, E Trulls Fortuny, Y Ono, V Lepetit, M Salzmann... - Proceedings of the 2018 ..., 2018 79
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