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Motivation and problem description

• Why visual odometry?
– Localization
– Mapping

• Classic methods
– ORB-SLAM: https://www.youtube.com/watch?v=IuBGKxgaxS0

• Why deep learning?
– Challenging scenes: textureless, lighting, indoor, outdoor
– Hand-crafted à Optimize the system end-to-end
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Brief summary of recent works

• Pure deep learning visual odometry
– Beyond tracking: LSTM, relative pose, absolute pose

• Beyond tracking: Selecting memory and refining poses for deep visual odometry
• F Xue, X Wang, S Li, Q Wang, J Wang, H Zha - … of the IEEE Conference on 

Computer …, 2019
– DSVO: predict left frame from right frame

• Deep virtual stereo odometry: Leveraging deep depth prediction for monocular direct 
sparse odometry

• N Yang, R Wang, J Stuckler, D Cremers - … of the European Conference on 
Computer …, 2018

• Not pure deep learning visual odometry
• Self-Supervised 3D Keypoint Learning for Ego-motion Estimation
• Visual Odometry Revisited: What Should Be Learnt?
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Self-Supervised 3D Keypoint Learning for Ego-motion Estimation
J Tang, R Ambrus, V Guizilini, S Pillai, H Kim, A Gaidon - arXiv preprint arXiv …, 2019



Highlights

• Self-supervised training with multi-view adaptation
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Motivation and problem description

• Keypoint matching is essential for Sfm, visual 
odometry (VO), SLAM

• Hand-engineered (SIFT) feature detectors and 
descriptors are dominant algorithms

• Deep learning methods drew attention (Superpoint)
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Motivation and problem description

• Contribution
– Fully self-supervised framework for the learning of 

depth-aware keypoint detection and description from 
unlabeled videos

– 3D multi-view adaptation, a novel adaptation 
technique that exploits the temporal context in videos

– Integrating with a state-of-the-art tracking method
such as Direct Sparse Odometry (DSO)

10



Prior works

• Learning-based methods for keypoint estimation
– Supervised method: LIFT (Kwang et al.), LF-Net (Yuki et al.)
– Self-supervised: Superpoint (Daniel et al.), Unsuperpoint (Peter et al.)

• Learning-based methods for visual odometry
– Sfm-learner (Zhou et al.)
– Visual odometry revisited (Huangying et al.)

11



Overview: Pipeline

• Depth prediction
• Keypoint prediction
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Networks

• Input/ Output
• DepthNet

– RGB Image à “Scale-ambiguous” dense (inverse) depth map D
• [20] Cle ́ment Godard, Oisin Mac Aodha, and Gabriel J. Bros- tow. Unsupervised 

monocular depth estimation with left- right consistency. In CVPR, 2017.

• KeypointNet
– RGB Image à k = {p, f, s} = {locations: Nx2, descriptors: Nx256, scores}

• [4] Anonymous. Neural outlier rejection for self-supervised keypoint learning. In 
Submitted to International Conference on Learning Representations, 2020. under 
review.

• Same author. (Guess accepted in ICLR 2020.)
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Network architecture

Neural Outlier Rejection for Self-Supervised Keypoint Learning
J Tang, H Kim, V Guizilini, S Pillai, R Ambrus - arXiv preprint arXiv:1912.10615, 2019 14



Network architecture

15



Loss function

• Photometric loss
– Dense
– Image synthesis

• Geometric loss
– Sparse
– Re-projection in the monocular two-view setting

16



Key idea of loss function

• Homography adaptation vs. multi-view adaptation (use both)
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Loss function in detail

• Differentiable pose estimation from 2D-3D correspondences
– 3D residuals
– SVD for closed-form solution
– Why need to be differentiable
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Loss function in detail

• Keypoint loss
– Descriptor matched keypoints ßà 3D adapted keypoints (localization loss)

• Descriptor loss
– Triplet loss, hard sample mining

• Score loss
– Same scores across frames
– High scores on good keypoints
– 2D Re-projection error
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Loss function in detail

• Photometric loss
– Loss on SSIM

• Depth smoothness loss
– Edge-aware term

• Depth Consistency
– Discourage scale-drift between dense depth predictions in adjacent frames

• Overall loss
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Detector and descriptor evaluation

• Work the best among those
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Experiments

• Frame-to-frame (F2F)
• Deep Semi-Direct Sparse Odometry (DS-DSO)
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Visual Odometry

• F2F worse than      
DF-VO[56]

• DS-DSO works on par 
with stereo methods

• Boosted by DSO
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Visual odometry

• Fair? Why choose monodepth2?
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Ablation study

• DSO improves a lot
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Future work and discussion

• First work to train detector and descriptor with multi-view adaptation
• Experiments look somehow good
• Only cover half of the visual odometry pipeline
• DS-DSO is not end-to-end optimized
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Ian Reid is the Head of the School of Computer Science at the University of Adelaide

[2] Visual Odometry Revisited: What Should Be Learnt?
H Zhan, CS Weerasekera, J Bian, I Reid - arXiv preprint arXiv:1909.09803, 2019 28



Motivation
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Method overview

• Image
• Depth prediction
• Forward/ backward optical flow
• Optical flow consistency
• Sparse correspondences from 

optical flow consistency
• 3D-2D correspondences to estimate 

[R, t]
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Method details and analysis

• Depth prediction
– Unsupervised photometric loss
– Training in stereo for scale consistency

• Optical flow
– LiteFlowNet
– Pre-trained in synthetic data
– Unsupervised photometric loss

[35] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow, “Digging into self-supervised monocular depth prediction,” October 2019.
[48] T.-W. Hui, X. Tang, and C. C. Loy, “Liteflownet: A lightweight con-volutional neural network for optical flow estimation,” in Proceedings of IE
EE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018, pp. 8981–8989.
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Experiments
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Future work and discussion
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Pipeline

Neural Outlier Rejection for Self-Supervised Keypoint Learning
J Tang, H Kim, V Guizilini, S Pillai, R Ambrus - arXiv preprint arXiv:1912.10615, 2019 37



Network architecture

Neural Outlier Rejection for Self-Supervised Keypoint Learning
J Tang, H Kim, V Guizilini, S Pillai, R Ambrus - arXiv preprint arXiv:1912.10615, 2019 38



Keypoint regression
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