Visual Computing Center (Computer Science and Engineering), Department of Electrical and Computer Engineering, UC San Diego

Analysis of Geometry and Deep Learning-based Methods for Visual Odometry

A Thesis Defense by You-Yi Jau

Professor Manmohan Krish Chandraker (Chair) Professor Nikolay A. Atanasov (Co-Chair) Professor Hao Su Professor Nuno M. Vasconcelos

Outline

- Introduction
- Visual odometry and SLAM
- Related work
- Deep keypoint-based camera pose estimation
- Deep learning-based visual odometry on various datasets
- Summary and future work

Outline

- Introduction
- Visual odometry and SLAM
- Related work
- Deep keypoint-based camera pose estimation
- Deep learning-based visual odometry on various datasets
- Summary and future work

Why Visual Odometry?

Autonomous driving

• Waymo, Tesla

Virtual reality

• HoloLens, Oculus

Augmented reality

• Magic Leap

Problem formulation

Camera

Where am I

What does the world look like

Image source: KITTI dataset

Driving to Price center

Driving to Price center

Moving from image A to image B

Camera pose in six degrees of freedom (6 DoF)

Camera pose in mathematical representation

Camera projection model

Pose representation

Trajectory evaluation

Estimated poses

Ground truth poses

Error metrics

Absolute Pose Error (APE)

Relative Pose Error (RPE)

. . .

Why do we use cameras?

GPS

- Inaccurate
- Low throughput

- Cheap IMUs: inaccurate, drifting
- Expensive IMUs: not easily available

• Available everywhere, like human eyes

https://vrtracker.xyz/handling-imu-drift/

Outline

- Introduction
- Visual odometry and SLAM
- Related work
- Deep keypoint-based camera pose estimation
- Deep learning-based visual odometry on various datasets
- Summary and future work

р

p'

p'

ORB-SLAM Overview

- Tracking
 - 2D-3D correspondences
 - Absolute pose estimation

Mapping

 3D points

ORB-SLAM Overview

- Tracking
 - 2D-3D correspondences
 - Absolute pose estimation

Mapping

 3D points

ORB-SLAM demo

- Tracking
- Mapping

ORB-SLAM Overview

Successful factors for ORB-SLAM

Outlier rejection

Outlines

- Introduction
- Visual odometry and SLAM
- Related work
- Deep keypoint-based camera pose estimation
- Deep learning-based visual odometry on various datasets
- Summary and future work

Related work

Geometry-based visual odometry

Mur-Artal et al. 2015

LSD-SLAM J. Engel et al. 2015

Semi-Direct VO (SVO) C. Forster et al. 2014

 Learning-based feature extraction and matching
 Mage Pair SuperPoint Network Correspond

LIFT Kwang Moo Yi et al. 2016

LF-Net Yuki Ono et al. 2018

SuperPoint Daniel DeTone et al. 2018

Related work

Learning-based visual odometry & camera pose estimation

Outlines

- Introduction
- Visual odometry and SLAM
- Related work
- Deep keypoint-based camera pose estimation
- Deep learning-based visual odometry on various datasets
- Summary and future work

Motivation and problem description

Camera pose estimation

- Key for visual odometry and SLAM
- SIFT + RANSAC

Deep learning-based method

- Learn from data
- Models to replace SIFT, RANSAC
- Modules not optimized together

Contributions

End-to-end framework

- Feature extraction, matching
- relative pose estimation

Novel modules

- Softargmax bridge
- Pose objective

Ablation study

- KITTI, ApolloScape
- Cross-dataset setting

The pipeline is inspired by ...

• ORB-SLAM

- SuperPoint (Magic Leap)
- Deep fundamental matrix estimation (DeepF) (Intel Lab)

ORB-SLAM Mur-Artal et. al. 2015

SuperPoint DeTone et. al. 2017

Pipeline Overview

Pipeline Overview

Image pairs

Feature Extraction

CNN

Correspondences

evpoints from detectors

Pose estimation

Pose

Image pairs

Feature Extraction

Correspondences

Pose estimation

Pose

How to make the keypoints differentiable?

How to make the keypoints differentiable?

How to make the keypoints differentiable?

Keypoint residual with 2D Soft-argmax

Keypoint residual with 2D Soft-argmax

Keypoint residual with 2D Soft-argmax

Differentiable keypoint

Soft-argmax detector head
 Subpixel accuracy
 Differentiable

Detection heatmap 2D Soft-argmax

$$u_{0}, v_{0} = (100, 150)$$

$$u_{1}, v_{2}^{2} = (100, 3, 150, 5)$$

$$(u',v') = (u_0,v_0) + (\delta u, \delta v),$$

$$\delta u = \frac{\sum_j \sum_i e^{f(u_i,v_j)} i}{\sum_j \sum_i e^{f(u_i,v_j)}}, \delta v = \frac{\sum_j \sum_i e^{f(u_i,v_j)} j}{\sum_j \sum_i e^{f(u_i,v_j)}}$$

Pipeline Overview

What are the losses?

What are the losses?

What are the losses?

VPut loss on **F** \checkmark Put loss on R, t

- $\mathbf{p}^{\prime T} \mathbf{F} \mathbf{p} = 0$ $\mathbf{E} = \mathbf{K}^{\prime T} \mathbf{F} \mathbf{K}.$

$$\mathbf{E} = [\mathbf{t}]_{\times} \mathbf{R}$$

Geometry-based loss

- Pose is the final output
- Handle pose decomposition

 $\mathbf{E} = [\mathbf{t}]_{\times} \mathbf{R}$

• Loss functions

 $Loss = L (rot) + \lambda * L (trans)$

L (rot) = \parallel quaternion (GT rot) - quaternion (Est. rot) \parallel_2

 $L (trans) = || GT trans - Est. trans ||_{2}$

Experiments -- baselines

SIFT-based methods

Learning-based methods

SIFT + RANSAC

SIFT + DeepF

Legend: Model specific Neural network Fixed function S Model estimator Weight estimator P + Preprocess WA w^j + SVD + g(x) + Residual + W_{iter} + w^j+

DeepF Ranftl et. al. 2018

SuperPoint + others

SuperPoint DeTone et. al. 2017

Experiments -- datasets

<u>ApolloScape</u>

Experiments -- datasets

<u>ApolloScape</u>

Ground truth F.

Estimated F.

Keypoints

Qualitative results

Image t

Image t +1

SIFT + RANSAC

Ground truth F.

Estimated F.

Keypoints

$Ours-End\mbox{-to-end}$

Ground truth F.

Estimated F.

Keypoints

SIFT + DeepF

Ground truth F.

Estimated F.

Keypoints

KITTI Experiment

Input

Si-base

Si-model

Ours - End-to-end

Evaluation metrics

Error

- Rotation error
- Translation error

Number

- Error < Threshold ?
- Inlier ratio (100% is the best)

Experiment results -- KITTI dataset

• Learning-based baselines

KITTI Models	KITTI dataset - error(deg.) inlier ratio \uparrow , mean \downarrow , median \downarrow									
	F	Rotation (deg	g.)	Translation (deg.)						
6	$0.1\uparrow$	Mean.↓	Med.↓	2.0↑	Mean.↓	Med.↓				
Base(Sp-Ran)	0.189	0.641	0.217	0.481	5.798	2.103				
Sp-Df-f	0.633	0.100	0.078	0.830	1.476	0.846				
Sp-Df-p	0.875	0.130	0.047	0.887	1.719	0.539				
 Ours(Sp-Df-f-end)	0.915	0.053	0.042	0.905	1.662	0.489				
 Ours(Sp-Df-p-end)	0.932	0.050	0.041	0.905	1.600	0.503				
Ours(Sp-Df-fp-end)	0.910	0.054	0.048	0.917	1.062	0.504				

KITTI Models	KITTI dataset - error(deg.) inlier ratio \uparrow , mean \downarrow , median \downarrow									
	F	Rotation (deg	g.)	Translation (deg.)						
	$0.1\uparrow$	Mean.↓	Med.↓	$2.0\uparrow$	Mean.↓	Med.↓				
Base(Si-Ran)	0.818	0.391	0.056	0.899	1.895	0.639				
Si-Df-f	0.938	0.051	0.041	0.914	1.699	0.484				
Si-Df-p	0.901	0.059	0.044	0.903	1.472	0.513				
Si-Df-fp	0.947	0.111	0.038	0.916	1.741	0.484				
Ours(Sp-Df-fp-end)	0.910	0.054	0.048	0.917	1.062	0.504				

Experiment results -- KITTI dataset

• Learning-based baselines

KITTI Models	KITTI dataset - error(deg.) inlier ratio \uparrow , mean \downarrow , median \downarrow									
	F	Rotation (deg	g.)	Translation (deg.)						
6	$0.1\uparrow$	Mean.↓	Med.↓	2.0↑	Mean.↓	Med.↓				
Base(Sp-Ran)	0.189	0.641	0.217	0.481	5.798	2.103				
Sp-Df-f	0.633	0.100	0.078	0.830	1.476	0.846				
Sp-Df-p	0.875	0.130	0.047	0.887	1.719	0.539				
 Ours(Sp-Df-f-end)	0.915	0.053	0.042	0.905	1.662	0.489				
 Ours(Sp-Df-p-end)	0.932	0.050	0.041	0.905	1.600	0.503				
Ours(Sp-Df-fp-end)	0.910	0.054	0.048	0.917	1.062	0.504				

KITTI Models	KITTI dataset - error(deg.) inlier ratio \uparrow , mean \downarrow , median \downarrow									
	F	Rotation (deg	g.)	Translation (deg.)						
	$0.1\uparrow$	Mean.↓	Med.↓	$2.0\uparrow$	Mean.↓	Med.↓				
Base(Si-Ran)	0.818	0.391	0.056	0.899	1.895	0.639				
Si-Df-f	0.938	0.051	0.041	0.914	1.699	0.484				
Si-Df-p	0.901	0.059	0.044	0.905	1.472	0.513				
Si-Df-fp	0.947	0.111	0.038	0.916	1.741	0.484				
Ours(Sp-Df-fp-end)	0.910	0.054	0.048	0.917	1.062	0.504				

Experiment results -- ApolloScape dataset

• Learning-based baselines

												X		
KITTI Models	Apollo dataset - error(deg.) inlier ratio \uparrow , mean \downarrow , median \downarrow						KITTI Models	Apoll	Apollo dataset - error(deg.) inlier ratio \uparrow , mean \downarrow , median \downarrow					
	Rotation (deg.)		Translation (deg.)			F	Rotation (deg	g.)	Translation (deg.)					
	$0.1\uparrow$	Mean.↓	Med.↓	$2.0\uparrow$	Mean.↓	Med.↓		$0.1\uparrow$	Mean.↓	Med.↓	$2.0\uparrow$	Mean.↓	Med.↓	
Base(Sp-Ran)	0.407	0.205	0.118	0.583	5.645	1.670	Base(Si-Ran)	0.922	0.157	0.037	0.979	0.788	0.388	
Sp-Df-f	0.725	0.126	0.068	0.754	2.074	1.155	Si-Df-f	0.845	0.172	0.043	0.895	2.452	0.389	
Sp-Df-p	0.730	0.124	0.067	0.827	1.905	0.974	Si-Df-p	0.727	0.333	0.056	0.760	4.918	0.658	
Ours(Sp-Df-f-end)	0.841	0.100	0.051	0.910	1.122	0.589	Si-Df-fp	0.840	0.148	0.044	0.911	2.103	0.369	
Ours(Sp-Df-p-end)	0.686	0.152	0.071	0.747	2.652	1.068	Ours(Sp-Df-fp-end)	0.864	0.092	0.051	0.924	1.275	0.659	
Ours(Sp-Df-fp-end)	0.864	0.092	0.051	0.924	1.275	0.659						<u> </u>		

Experiment results -- ApolloScape dataset

• Learning-based baselines

												X			
KITTI Models	Apollo dataset - error(deg.) inlier ratio↑, mean↓, median↓						KITTI Models Apollo dataset - error(deg.) inlier ratio						∱, mean↓, median↓		
	Rotation (deg.)		Translation (deg.)			F	Rotation (deg	g.)	Translation (deg.)						
	$0.1\uparrow$	Mean.↓	Med.↓	$2.0\uparrow$	Mean.↓	Med.↓		$0.1\uparrow$	Mean.↓	Med.↓	$2.0\uparrow$	Mean.↓	Med.↓		
Base(Sp-Ran)	0.407	0.205	0.118	0.583	5.645	1.670	Base(Si-Ran)	0.922	0.157	0.037	0.979	0.788	0.388		
Sp-Df-f	0.725	0.126	0.068	0.754	2.074	1.155	Si-Df-f	0.845	0.172	0.043	0.895	2.452	0.389		
Sp-Df-p	0.730	0.124	0.067	0.827	1.905	0.974	Si-Df-p	0.727	0.333	0.056	0.700	4.918	0.658		
Ours(Sp-Df-f-end)	0.841	0.100	0.051	0.910	1.122	0.589	Si-Df-fp	0.840	0.148	0.044	0.911	2.103	0.369		
Ours(Sp-Df-p-end)	0.686	0.152	0.071	0.747	2.652	1.068	Ours(Sp-Df-fp-end)	0.864	0.092	0.051	0.924	1.275	0.659		
Ours(Sp-Df-fp-end)	0.864	0.092	0.051	0.924	1.275	0.659						<u></u>			

Summary

Contributions

- End-to-end framework
- Novel modules
- Cross-dataset evaluation

Limitations

- Camera pose estimation
 - Visual odometry

Outlines

- Introduction
- Visual odometry and SLAM
- Related work
- Deep keypoint-based camera pose estimation
- Deep learning-based visual odometry on various datasets
- Summary and future work

Motivation

- Deep learning-based method
- Various environments

Overview of SC-SfMLearner

Experiments

- Datasets
 - Outdoors: KITTI
 - Indoors: EuRoC
- Prediction
 - Depth
 - Pose

Datasets

KITTI

Trajectory -- Model trained on KITTI

KITTI -- seq 09

SC-SfMLearner

EuRoC -- MH_01_easy

Comparison -- SC-SfMLearner vs. ORB-SLAM

KITTI -- seq 09

EuRoC -- MH_01_easy

Comparison -- SC-SfMLearner vs. ORB-SLAM

KITTI -- seq 09

EuRoC -- MH_01_easy

Problems

- Domain gap
- Overfitting

Future work for deep visual odometry

- Optimization
 - Bundle adjustment

- Keyframe
 - Representative
 - Large baseline

Outlines

- Introduction
- Visual odometry and SLAM
- Related work
- Deep keypoint-based camera pose estimation
- Deep learning-based visual odometry on various datasets
- Summary and future work

Summary

- Overview for visual odometry
- Analysis for geometry-based system -- ORB-SLAM
- A deep keypoint-based pipeline for camera pose estimation
- Analysis for deep learning-based system -- SC-SfMLearner

Future work

- Key from geometry for successful visual odometry
- Deep keypoint-based pose estimation to visual odometry
- Combination of geometry-based and deep learning-based methods

Acknowledgements

<u>Advisors</u>

- Committee:
 - Professor Manmohan Chandraker
 - Professor Nikolay Atanasov
 - Professor Hao Su
 - Professor Nuno M. Vasconcelos
- Professor Mohan Trivedi
- Professor Shao-Yi Chien, Dr. Po-Chen Wu (NTU)
- Dr. Wei-Chao Chen, Dr. Trista Chen (Inventec)
- Stephanie Mathew (ECE)

Friends, Co-workers

- Rui Zhu
- Bowen Zhang
- Giayuan Gu, Shuang Liu
- Ishit Mehta
- Fred Lin
- Joseph Li-Yuan Chiang, Vanessa Chang

Acknowledgements

Thank you

Github: https://github.com/eric-yyjau

Backup slides

Motivation and problem description

- Camera pose estimation has been the key to Simultaneous Localization and Mapping (SLAM) systems
- SIFT + RANSAC method has dominated the design of camera pose estimation pipeline for decades.
- Basic challenges for learning-based systems.
 - Not trained and optimized end-to-end for the ultimate purpose of camera poses
 - The over-fitting nature of training-based methods
 - Existing learning-based keypoint detector is weaker than SIFT

Method details and analysis

- Geometry-based loss
 - Correspondences \rightarrow Fundamental matrix
 - Fundamental matrix \rightarrow solve R, t
 - Optimize over the best R, t (min. error)

Loss = L(rot) + λ * L (trans)

 $L(rot) = || GT rot - Est. rot ||_{2}$

L (trans) = || GT trans - Est. trans||₂

$$\mathcal{L}_{pose} = \min(\mathcal{L}_{rot}(\mathbf{R}_{est}, \mathbf{R}_{gt}), c_r) + \lambda_{rt} * \min(\mathcal{L}_{trans}(\mathbf{t}_{est}, \mathbf{t}_{gt}), c_t),$$
$$\mathcal{L}_{rot} = \min(\|q(\mathbf{R}_{est_i}) - q(\mathbf{R}_{gt})\|_2), i = [1, 2],$$
$$\mathcal{L}_{trans} = \min(\|\mathbf{t}_{est_i} - \mathbf{t}_{gt}\|_2), i = [1, 2],$$

Contribution

- A new end-to-end trainable framework for feature extraction, matching, outlier rejection, and relative pose estimation
- The pipeline is tightly connected with the novel *Softargmax* bridge, and optimized with geometry-based objective obtained from correspondences
- The thorough study on cross-dataset setting is done to evaluate generalization ability, which is critical but not much discussed in the existing works

Experiment settings

- Baselines
 - SIFT + RANSAC (Si-base)
 - SuperPoint + RANSAC (Sp-base)
 - SIFT + DeepF[34] (Si-models)
 - Our method no end-to-end training (Sp-models)
 - Our method with end-to-end training (DeepFEPE)
- Datasets
 - KITTI
 - ApolloScape