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Why Visual Odometry?
Autonomous driving 
● Waymo, Tesla

4https://www.pcmag.com/news/waymo-gets-first-permit-to-test-fully-driverless-c
ars-in-california 

https://www.uctoday.com/collaboration/the-future-is-now-everything-you-need-
to-know-about-microsoft-hololens/ 

Augmented reality
● Magic Leap

Virtual reality 
● HoloLens, Oculus

https://circuitstream.com/blog/magic-leap-breakdown/ 

https://www.pcmag.com/news/waymo-gets-first-permit-to-test-fully-driverless-cars-in-california
https://www.pcmag.com/news/waymo-gets-first-permit-to-test-fully-driverless-cars-in-california
https://www.uctoday.com/collaboration/the-future-is-now-everything-you-need-to-know-about-microsoft-hololens/
https://www.uctoday.com/collaboration/the-future-is-now-everything-you-need-to-know-about-microsoft-hololens/
https://circuitstream.com/blog/magic-leap-breakdown/


Problem formulation

5Image source: 
https://www.amazon.com/Appbot-Riley-Controlled-Movable-Safety/dp/B01LW
XF28H

Image source: KITTI dataset Image source: 
https://www.amazon.com/Smart-Tools-co-Compass/dp/B00K3HHA9Y

Camera Images Where am I

What does the world look like
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Driving to Price center  

http://www.youtube.com/watch?v=TfrfULv0Ras
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Driving to Price center  

http://www.youtube.com/watch?v=HjwJLRQAbo8


Moving from image A to image B
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Camera pose in six degrees of freedom (6 DoF) 

+
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Position (3 DoF)

Orientation (3 DoF)



Camera pose in mathematical representation
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Rotation Matrix translation

https://www.wired.com/2015/09/mind-bending-physics-tennis-balls-spin/ https://www.shutterstock.com/search/tennis+ball+moving%5D?image_type=ph
oto



Camera projection model

11Po-Chen Wu PhD Dissertation 2018.

Camera coordinate system World coordinate system

x

y

z

p’ = (u’, v’)

xcam

zcam

ycam

Xcam = (x’, y’, z’) Xworld = (x’, y’, z’)

T = [R | t]



Pose representation
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World coordinate system

x

y

z

xcam

zcam

ycam

Camera coordinate system

Relative pose

absolute pose



Trajectory evaluation
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Ground truth poses Error metrics

Absolute Pose Error (APE)

Relative Pose Error (RPE)

...

Estimated poses



https://vrtracker.xyz/handling-imu-drift/

Why do we use cameras?

● Inaccurate
● Low throughput

14

● Available everywhere, 
like human eyes

● Cheap IMUs: 
inaccurate, drifting

● Expensive IMUs: not 
easily available

https://www.scienceabc.com/innovation/how-gps-global-positioning-system-wo
rks-satellite-smartphone.html

https://www.theguardian.com/technology/2019/oct/01/iphone-11-review-iphone
-xr-dual-camera-a13-smartphone

GPS IMU Camera
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Visual odometry overview

16

Input Detection Description Matching Estimation Output



Visual odometry overview
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p’ = (u’, v’)

p =  (u, v)

Input Detection Description Matching Estimation Output



Visual odometry overview
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p’ = (u’, v’)

p =  (u, v)

Input Detection Description Matching Estimation Output



Visual odometry overview
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RANSAC

p’ = (u’, v’)

p =  (u, v)

Input Detection Description Matching Estimation Output



Visual odometry overview
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p’ = (u’, v’)

p =  (u, v)

RANSAC

Input Detection Description Matching Estimation Output



ORB-SLAM Overview
● Tracking

○ 2D-3D correspondences
○ Absolute pose estimation

21UCSD CSE252C: Lec07_advancedsfm (Manmohan Chandraker)

● Mapping
○ 3D points

Frame k-N Frame k-3 Frame k-2 Frame k-1 Frame k
...

... 3D points

2D points
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22UCSD CSE252C: Lec07_advancedsfm (Manmohan Chandraker)

● Mapping
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Frame k-N Frame k-3 Frame k-2 Frame k-1 Frame k
...

... 3D points
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ORB-SLAM demo
● Tracking
● Mapping

23https://thumbs.gfycat.com/IgnorantDangerousDevilfish-size_restricted.gif

https://thumbs.gfycat.com/IgnorantDangerousDevilfish-size_restricted.gif


Δ

ORB-SLAM Overview
● Tracking

○ 2D-3D correspondences
○ Absolute pose estimation

24UCSD CSE252C: Lec07_advancedsfm (Manmohan Chandraker)

● Mapping
○ 3D points
○ Keyframes

Not keyframe

Keyframe

Frame k-N Frame k-3 Frame k-2 Frame k-1 Frame k
...

... 3D points

2D points



Successful factors for ORB-SLAM

25UCSD CSE252C: Lec07_advancedsfm (Manmohan Chandraker)

Frame k-3 Frame k-2 Frame k-1 Frame k

Outlier rejection Keyframe-based Bundle adjustment
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Related work
● Geometry-based visual odometry

ORB-SLAM
Mur-Artal et al. 2015

LSD-SLAM
J. Engel et al. 2015

Direct SO (DSO)
J. Engel et al. 2018

Semi-Direct VO (SVO)
C. Forster et al. 2014

● Learning-based feature extraction 
and matching

LIFT
Kwang Moo Yi et al. 2016 SuperPoint

Daniel DeTone et al. 2018

Self-supervised 3D keypoint
JiexiongTang et al. 2019

LF-Net
Yuki Ono et al. 2018 27



Related work

28

Good Correspondences
Kwang Moo Yi et al. 2018

Sfm-learner
T. Zhou et al. 2017

GeoNet
Zhichao Yin et al. 2018

DeepF
Ranftl et. al. 2018DeepVO

Sen Wang et al. 2017
UnDeepVO

Ruihao Li et al. 2018

CNN-SLAM
Keisuke Tateno et al. 2017

PoseNet
Alex Kendall et al. 2016

● Learning-based visual odometry & camera pose estimation
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Motivation and problem description

Camera pose estimation
● Key for visual odometry and SLAM
● SIFT + RANSAC

30

Deep learning-based method
● Learn from data
● Models to replace SIFT, RANSAC
● Modules not optimized together

Deep networks



Contributions
End-to-end framework
● Feature extraction, 

matching
● relative pose estimation

31

Ablation study
● KITTI, ApolloScape
● Cross-dataset setting

Novel modules
● Softargmax bridge
● Pose objective



The pipeline is inspired by ...
● ORB-SLAM

32

ORB-SLAM
Mur-Artal et. al. 2015

SuperPoint
DeTone et. al. 2017

DeepF
Ranftl et. al. 2018

● Deep fundamental 
matrix estimation 
(DeepF) (Intel Lab)

● SuperPoint      (Magic 
Leap)



Pipeline Overview
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Pipeline Overview
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35

Image pairs Feature Extraction

CNN Detector

Descriptor

Keypoint detection
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Image pairs Feature Extraction

CNN Detector

Descriptor

Keypoint detection
Detection heatmap
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Image pairs Feature Extraction

CNN Detector

Descriptor

Keypoint detection
Detection heatmap

u0, v0 = (100,150)
Non-Maximum Suppression (NMS)
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Image pairs Feature Extraction

CNN Detector

Descriptor

Keypoint detection
Detection heatmap

u0, v0 = (100,150)
Non-Maximum Suppression (NMS)

Not differentiable
Integer level

✘

✘
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Image pairs Feature Extraction

CNN Detector

Descriptor

How to make the keypoints differentiable?
Detection heatmap

u0, v0 = (100,150)
Non-Maximum Suppression (NMS)
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Image pairs Feature Extraction

CNN Detector

Descriptor

How to make the keypoints differentiable?
Detection heatmap

u0, v0 = (100,150)
Non-Maximum Suppression (NMS)

Add network to 
predict residual

✘
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Image pairs Feature Extraction

CNN Detector

Descriptor

How to make the keypoints differentiable?
Detection heatmap

u0, v0 = (100,150)
Non-Maximum Suppression (NMS)

Residual from 
the heatmap
✔
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Image pairs Feature Extraction

CNN Detector

Descriptor

Keypoint residual with 2D Soft-argmax
Detection heatmap 2D Soft-argmax

u0, v0 = (100,150)
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Image pairs Feature Extraction

CNN Detector

Descriptor

Keypoint residual with 2D Soft-argmax
Detection heatmap 2D Soft-argmax

u0, v0 = (100,150) 𝛿u, 𝛿v = (0.3,0.5)

u’, v’ = (100.3,150.5)
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Image pairs Feature Extraction

CNN Detector

Descriptor

Keypoint residual with 2D Soft-argmax
Detection heatmap 2D Soft-argmax

u0, v0 = (100,150) 𝛿u, 𝛿v = (0.3,0.5)

u’, v’ = (100.3,150.5)
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Differentiable keypoint
Detection heatmap 2D Soft-argmax

u0, v0 = (100,150) 𝛿u, 𝛿v = (0.3,0.5)

u’, v’ = (100.3,150.5)

● Soft-argmax detector head
○ Subpixel accuracy
○ Differentiable
✔
✔



Pipeline Overview
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What are the losses?

47

Fundamental 
matrix

L2 loss
Sampson 
distance loss



What are the losses?
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Fundamental 
matrix

L2 loss
Sampson 
distance loss

Put loss on F✔



What are the losses?
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Fundamental 
matrix

Sampson 
distance loss

Put loss on F
Put loss on R, t
✔
✔

L2 loss



Geometry-based loss

50

● Pose is the final output
● Handle pose decomposition

● Loss functions

Loss = L (rot) + λ * L (trans)

L (rot) = || quaternion (GT rot) - quaternion (Est. rot) ||2

L (trans) = || GT trans - Est. trans||2



Experiments -- baselines

SIFT + RANSAC

51

SuperPoint + othersSIFT + DeepF

 SIFT-based methods  Learning-based methods

SuperPoint
DeTone et. al. 2017

DeepF
Ranftl et. al. 2018



Experiments -- datasets
KITTI ApolloScape

52https://thumbs.gfycat.com/IgnorantDangerousDevilfish-size_restricted.gif http://apolloscape.auto/self_localization.html 

https://thumbs.gfycat.com/IgnorantDangerousDevilfish-size_restricted.gif
http://apolloscape.auto/self_localization.html


Experiments -- datasets
KITTI ApolloScape

53https://thumbs.gfycat.com/IgnorantDangerousDevilfish-size_restricted.gif http://apolloscape.auto/self_localization.html 

https://thumbs.gfycat.com/IgnorantDangerousDevilfish-size_restricted.gif
http://apolloscape.auto/self_localization.html


Qualitative results
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Estimated F.

Ground truth F.

Keypoints
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Image t Image t +1
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SIFT + RANSAC

Estimated F.

Ground truth F.

Keypoints
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Ours – End-to-end

Estimated F.

Ground truth F.

Keypoints
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SIFT + DeepF

Estimated F.

Ground truth F.

Keypoints
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http://www.youtube.com/watch?v=2q-_-MO4GBI


Evaluation metrics

● Rotation error
● Translation error

60

● Error < Threshold ?
● Inlier ratio (100% is the best)

Error Number



● Learning-based baselines ● SIFT-based baselines

Experiment results -- KITTI dataset
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● Learning-based baselines ● SIFT-based baselines

Experiment results -- KITTI dataset
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● SIFT-based baselines

Experiment results -- ApolloScape dataset
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● Learning-based baselines



● SIFT-based baselines

Experiment results -- ApolloScape dataset
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● Learning-based baselines



Summary
Contributions

● End-to-end framework
● Novel modules
● Cross-dataset evaluation

65

Limitations

● Camera pose estimation
○ Visual odometry
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Motivation
● Deep learning-based method
● Various environments

67



Overview of SC-SfMLearner

68Figure is from original paper.



Experiments
● Datasets

○ Outdoors: KITTI
○ Indoors: EuRoC

● Prediction
○ Depth
○ Pose

69



Datasets
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KITTI EuRoC
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http://www.youtube.com/watch?v=8tFE6itHaeM


72

http://www.youtube.com/watch?v=0xP6R6Yha2c


Trajectory -- Model trained on KITTI
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KITTI -- seq 09 EuRoC -- MH_01_easy

SC-SfMLearner SC-SfMLearner



Comparison -- SC-SfMLearner vs. ORB-SLAM
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KITTI -- seq 09 EuRoC -- MH_01_easy

SC-SfMLearner ORB-SLAM SC-SfMLearner ORB-SLAM



Comparison -- SC-SfMLearner vs. ORB-SLAM
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KITTI -- seq 09 EuRoC -- MH_01_easy

SC-SfMLearner ORB-SLAM SC-SfMLearner ORB-SLAM



Problems
● Domain gap
● Overfitting

76



Future work for deep visual odometry
● Optimization

○ Bundle adjustment

77

● Keyframe
○ Representative
○ Large baseline

Frame k-3 Frame k-2 Frame k-1 Frame k
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Summary
● Overview for visual odometry
● Analysis for geometry-based system -- ORB-SLAM
● A deep keypoint-based pipeline for camera pose estimation
● Analysis for deep learning-based system -- SC-SfMLearner

79



Future work
● Key from geometry for successful visual odometry
● Deep keypoint-based pose estimation to visual odometry
● Combination of geometry-based and deep learning-based methods

80
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Thank you
Github: https://github.com/eric-yyjau 

https://github.com/eric-yyjau


Backup slides



Motivation and problem description
• Camera pose estimation has been the key to Simultaneous Localization and 

Mapping (SLAM) systems
• SIFT + RANSAC method has dominated the design of camera pose estimation 

pipeline for decades.
• Basic challenges for learning-based systems.

– Not trained and optimized end-to-end for the ultimate purpose of camera poses
– The over-fitting nature of training-based methods
– Existing learning-based keypoint detector is weaker than SIFT

85



Method details and analysis

86

• Geometry-based loss
– Correspondences → Fundamental matrix
– Fundamental matrix →  solve R, t
– Optimize over the best R, t (min. error)

Loss = L(rot) + λ * L (trans)

L(rot) = || GT rot - Est. rot ||2

L (trans) = || GT trans - Est. trans||2



Contribution
• A new end-to-end trainable framework for feature extraction, matching, outlier 

rejection, and relative pose estimation
• The pipeline is tightly connected with the novel Softargmax bridge, and 

optimized with geometry-based objective obtained from correspondences
• The thorough study on cross-dataset setting is done to evaluate generalization 

ability, which is critical but not much discussed in the existing works

87



Experiment settings
• Baselines

– SIFT + RANSAC (Si-base)
– SuperPoint + RANSAC (Sp-base)
– SIFT + DeepF[34] (Si-models)
– Our method – no end-to-end training (Sp-models)
– Our method - with end-to-end training (DeepFEPE)

• Datasets
– KITTI
– ApolloScape

88[34] Rene ́ Ranftl and Vladlen Koltun. Deep Fundamental Ma- trix Estimation. In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss, editors, Computer Vision – ECCV 2018, volume 11205, pages 292–309. Springer Inter- national 
Publishing, Cham, 2018.


